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An orthogonal coordinate system along a generic spatial curve has been introduced, 
and the Navier-Stokes equations for a steady incompressible viscous flow have been 
explicitly written in this frame of reference. As an application the flow in a helical 
pipe has been studied, and, formdii 5f curvature and torsion small compared with 
the radius of the pipe, the flow has been considered as a perturbed Poiseuille flow. 
The result is that  for curvatures and torsions of the same order and for low Reynolds 
number the curvature induces on the flow a first-order effect on the parameter E = K a ,  

where K is the curvature and a the radius of the pipe, while the effect of the torsion 
on the flow is of the second order in E .  This last result disagrees with those of Wang 
(1981), who, adopting a non-orthogonal coordinate system, found a first-order effect 
of torsion on the flow. 

1. Introduction 
The effect of torsion on the flow in helical pipes is not fully understood. Particularly 

interesting from a theoretical point of view is to determine whether the torsion has 
an effect comparable to  the curvature in developing secondary circulating flows in 
a plane normal to the axis of the pipe. 

Wang (1981) in a recent article has studied this problem by introducing a non 
orthogonal, helical coordinate system. I n  terms of the parameter E = KU 6 1 ,  where 
K is the curvature and a the radius of the pipe, and for curvatures and torsions 
of the same order, his results give a first-order effect in E of the torsion on the 
secondary flow, comparable to the effect of the curvature and perturbative of the 
primary flow, the Poiseuille flow. For zero torsion he recovers the two symmetric cells 
found by Dean (1927), and he states that the effect of the first-order term due to the 
torsion depends on the Reynolds number, and is in some cases so dominant that the 
two recirculating cells become a single one. 

I n  our work we introduce an orthogonal system of coordinates along a spatial curve, 
and we derive the Navier-Stokes equation in this metric by using simple scale factors. 
As a first application we attempt to  test the effect of the torsion on a helical pipe 
flow, for constant values of curvature and torsion. I n  this analysis we adopt the same 
approximation used by Dean (1927), and we consider the motion in the helical pipe 
as a perturbation of the main Poiseuille flow. Our perturbative parameter is E ,  and 
the two other parameters A = r / K ,  where 7 is the torsion of the helix, and the 
Reynolds number 9? of the main flow in the pipe are considered to be of order unity. 

2. An orthogonal coordinate system following a spatial curve. The metric and 
the Navier-Stokes equations 

Let us consider a spatial curve, with s the arc length, R(s) the curve position, T 
the tangent, and N and B the normal and the binormal. 
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FIGURE 1 .  Wang’s (1981) coordinate system. 

Wang (1981) constructed a coordinate system (s,r,6) such that any Cartesian 
position vector x can be expressed as (see figure 1 )  

x = P- 0 = R(s) + r cos 6N(s) + r sin 6B(s). (1)  

T=--, N=--, B = T x N ,  P a ,  b,  c )  
dR 1 dT Using the relations 

ds K d S  

and the Frenet formulae 
dB 
- = -rN, 

dN 
ds ds 
- = TB-KT, 

where K and r are the curvature and the torsion, Wang (1981) obtains the metric 

dx .dx = [ ( l  -wcos6)z+rzrz] (ds)2+(dr)2+r2(d6)2+2rr2dsdB. (4) 

The last term in (4) indicates that the coordinate system ( s ,  r ,  6) is non-orthogonal, 
and tensor analysis is necessary to derive the governing equations. 

Now we will show that i t  is possible to obtain a new orthogonal coordinate 
system. Making use of the fact that the origin of the angle 6 in the plane normal to 
the axis is arbitrary, we can express the Cartesian vector x as (see figure 2) 

x = P - 0  = R(s)+rcos(6+$(s)+$,)N(s)+rsin(6+$(s)+$,)B(s), ( 5 )  

where 

and with $o and so taking arbitrary values. 

position vector dx corresponding to increments in the coordinates 
We choose for $o the particular value in, and we can write for the change in the 

dx = ds(1 +Krsin(6+$))a,+dra,+rd6ao, (7 )  
where the unit vectors parallel to the coordinate lines are 

a, = T, 

a, = Bcos(O+$)-Nsin(O+$), ( 8 b )  

a,=-Bsin(tI+$)-Ncos(O+$), ( 8 c )  
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I l X  

FIGURE 2. Present coordinate system. 

and finally we obtain the following metric for our new coordinate system: 

dx.dx = [ l + ~ r s i n ( O + # ) ] ~ ( d s ) ~ + ( d r ) ~ + r ~ ( d O ) ~ ,  (9) 

which is clearly an orthogonal one. 
The choice of do = &r is such that when r = 0 we obtain the system of reference 

ordinarily used in the study of the flow in a curved pipe (see e.g. Ward-Smith 1980, 
p. 249): 

Let us now write the Navier-Stokes equations for an incompressible steady viscous 
fluid in the coordinates s, r ,  8 with the orthogonal metric (9). In  the following we 
will write K ,  r and #, but it is intended that generally they are functions of the arc 
length s. 

dx . dx = 11 + K r  sin 812 ( d ~ ) ~  + (dr )2 + (10) 

We can write for the velocity vector v 

v . v = 0 ,  ( v . v ) v = - v p - v v x v x v ,  (1  1 a ,  b )  

where p and v are the kinematic pressure and the kinematic viscosity. In  orthogonal 
curvilinear coordinate system the expression for the divergence is 

where tl ,  c2, 
the components of the velocity. The components of the gradient are given by 

are the orthogonal coordinates, h,, h,, h, the scale factors, and vl, v2, v3 

l a  l a  l a  -- __  -- 
h, 861 ’ h2 a c 2  ’ h3 853 

(see Batchelor 1967), and the components of o = V x v are 

i a  a i a  a 
W 1  = - ( 7 ( h 3 w 3 ) - - ( h 2 v 2 ) ) >  h2h3 363 w2 = - ( - (hlwl)-S,(h3~3)) ,  h3h1 a63 (14a, b )  
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while the components of (v . V) v are 

where the operator 9 is given by the expression 

In our case we have 
5,. 8 r 8  
hi f+Krsin(O+$) 1 r 
'i U v w  

and we obtain the following non-dimensional expressions : for the continuity equation 

a3 av" iad v" 
a8 ar r ae i 

w--;+--,+;;-+-+t-~~[Bsin(t?+q3)+dcos(t?+q3)] = 0; 

and for the momentum equations 

Here 
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and 

where a and U are a reference length and a reference velocity. The validity of this 
set of equations is for r < 1 / ~ .  Otherwise, as Wang (1981) notices, the description 
of any point in the system is not unique. For K and 7 constant they allow the study 
of a helical flow, and for 7 = 0 and K constant they reduce to the equations written 
in toroidal coordinates by Dean (1927). 

3. Laminar flow in a helical pipe. First approximation for small curvature and 
torsion 

Let us now apply the equations (17) and (18) to the study of the effect of the torsion 
in a helical flow. In  this case K and 7 are constant, and we adopt a first-approximation 
method for curvature and torsion small compared with the radius of the pipe, by 
considering that their effects are a perturbation of the main Poiseuille flow. I n  this 
case the reference length a is the radius of the pipe, the reference velocity U is the 
central velocity of the main Poiseuille flow, and we assume that E < 1 and that h 
and 9 are of order unity. In  this case we look for solutions of (17) and (18) in the 
form 

ii = . i i , ( a ) + E i i , ( e + + , q + .  . ., o = ~o,(e+#,r")+. . ., 

iz = E i z , ( e + # , r " ) + .  . ., fi =$O(a)+Efil(e+#,a)+. . ., 

P a ,  b )  

(21 c ,  d )  

Go(?) = 1 -P, f i0(S)  = --a. (22a,  6 )  
4 
st 

where 

The functional dependence of the perturbative terms on 0+#  and ? ensures that 
we are searching for fully developed flow: they do not depend explicitly on 3, the 
non-dimensional arc length. We can write, owing to the fact that generally we have 

If we substitute (21) and (23) in the continuity and momentum equations (17) and 
(18), we identically satisfy the e0 equations (Poiseuille flow), and we obtain for the 

terms the following set of relations: 

d.ii d f i ~  [( a i )(r_+cosin(8+0)) ac, 
dr  ds" a aa a o,+ = ?sin(B+#)---+- -+- 
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where use has been made of the fact that 

It is easy to recognize that the torsion does not have first-order effects on the motion, 
because these equations are identical to those of Dean (1927), which can be solved 
by writing 

Cl = S;(F)sin ( O + $ ) ,  

Gl = G,i(r")cos(O+$), g1 =r?;r(r")sin(B++), 

and which have as solution the well-known recirculating flow in the plane normal to 
the axis of the pipe (for a good review of the method, see Ward-Smith 1980). It must 
be noted finally that this result applies also to the more-general case in which 
K = constant and 7 = 7 ( s ) .  

d, = v";(r") sin ( O + + ) ,  

4. Conclusions 
The introduction of an orthogonal system of coordinates along a spatial curve has 

allowed us to verify in a simple way that the effect of torsion on a helical pipe flow 
is a second-order one, while the effect of the curvature is a first-order one. This result 
disagrees with the results of Wang (1981), who found a first-order effect of torsion 
on the flow. Probably for higher Reynolds numbers, or for high ratios of torsion to 
curvature the effects are different, and obviously the consequences of a helix angle 
are very great for the components of the external forces such as gravity. However, 
from the point of view of the pure geometrical consequences of the bending and the 
twisting of the axis, curvature and torsion have not effects of the same order on the 
pipe flow. 

Appendix. Comments on the paper of Wang (1981) 

a point is given in terms of the coordinates xi, 
Let us first of all review some notions of differential geometry. If the position of 

P = P(xi), 

we can define in every point xi four different systems of base vectors, which give four 
different representations of the general vector v (see e.g. Sokolnikoff 1951). 

dP (i) The base vectors are 

dxi = 

They are directed tangentially to the xi coordinate curve, and the components vi in 
the representation v = vzai 

are called the contravariant components of V. 
(ii) The base vectors are ai, such that a, .  aj = @. This is the reciprocal base system, 
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and the base vectors are normal to the surface xi = constant. The components vi in 
the representation v = viai 

are called the covariant components of V. 

to unity. The components ui in the representation 
(iii) The base versors are bi, and have the same orientation as ai but are normalized 

v = uib. 

are called the physical contravariant components of V. 

are normalized to unity. The components ui in the representation 
(iv) The base versors are bi, and have the same orientation as ai, but they also 

v = u.bi 

are called the physical covariant components of V. 
The fundamental quadratic form, which gives the square of the element of arc, is 

d P  . dP = gijdxi dxj, 

where gij = ai . aj, gij = ai . aj and we have 

vi = g i ju i ,  

where it should be noted that the summation convention applied to the repeated 
indices does not apply to the terms (gjj)a, (gii)4. 

In  the Wang system of coordinates x1 = r ,  x2 = 0, x3 = s,  where the surfaces 
s = constant are planes normal to a curve P = P(s), and r and 8 are polar coordinates 
in these planes. The metric tensor gij is 

gll = gI1 = 1, 

g12 = g,, = gI3 = 913 = 0, 

gZ2 = r2, g33 = (1 - K r  cos 8), + r2r2 = G, 
7 

gZ3 = rr2, 923 = -- 
M ’  

where K = K ( S )  and r = r ( s )  are the curvature and the torsion of the curve. If vi are 
the contravariant components of the velocity v (in terms of which Wang writes the 
Navier-Stokes equations), the physical contravariant and covariant components of 
v are given by the expressions 

u1 = ~ 1 ,  u2 = 2127, u3 = ~ 3 G 4 ,  

4 rr 
M2 

u1 = ul, u2 = (Z) u 2 + y u 3 ,  u3 = 

The description that can be most easily correlated with experiment is the physical 
covariant description, which separates the Component u3 normal to the plane 
s = constant from the component of the velocity in the plane s = constant. The 
description of Wang is in terms of the physical contravariant components (see 
equation (13) of his paper, where u = ul, v = u2, w = u3 according to our symbolism), 
which are directed tangentially to the ( r ,  8, s)-coordinate curves. As a consequence 
of the fact that his system of coordinates is not orthogonal, the physical contravariant 
component w, which is parallel to the s-curve, is not normal to the plane s = constant, 
(u3 * u”. 
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If we describe the motion in terms of the physical covariant components, the term 
dependent on the parameter h in equation (28) of Wang disappears, and by 
consequence the effect of the torsion. It is interesting to notice that Wang in his paper 
has realized that ‘since the coordinate system is not orthogonal the velocity w [ = u3 
in our symbolism], in general, is not perpendicular to the ( r ,  @-plane’ (see Wang 1981, 
p. 189), but only with reference to the correct calculation of the flow rate, which must 
be calculated by recourse to  the covariant components. 

Obviously in our orthonormal system of coordinates there is no difference between 
covariant and contravariant components. 
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